
 1

Modular LED Marquee and Development System

Version Draft, 9/16/2015

 2

Table of Contents
BriteBlox Firmware 3.4 .. 3

Displayboard Hardware Design ... 3

Marquee Data Protocol .. 4

Special Firmware Operations ... 5

Control Codes .. 5

Additional Support ... 6

Copyleft © 2015 OpenBrite, LLC.

All trademarks mentioned are property of their respective owners.

Version Draft, 9/16/2015

 3

BriteBlox Firmware 3.4
BriteBlox Displayboards as of the present time come shipped with firmware version 3.4.

This is the fourth iteration of the firmware designed for Board Revision 3. The first two

board revisions were made in very small prototyping runs and are last known to be in the

hands of two elite Kickstarter backers.

Displayboard Hardware Design

The heart of a Displayboard is two Atmel ATmega168 microcontrollers. All digital I/O pins

for both chips are exposed by headers on the board. However, as some pins are designated

to be used as current sinks for the cathodes on the LED panels, and there are less cathode

pins than anode pins, these pins have resistors in between the direct output from the chips.

You will notice there are a total of 10 resistors on the board since there are 5 cathodes for

red LEDs and 5 cathodes for green LEDs. This is defined by the design of the LED panels.

Here are the output pins that flow straight to the headers versus being impeded by

resistors. These pins are the same whether considering the red or green chip.

No Resistor Before Header Pin Resistor Present

PD0 (D0, RXD) PD2 (D2)

PD1 (D1, TXD) PD5 (D5)

PD3 (D3) PD7 (D7)

PD4 (D4) PB0 (D8)

PD6 (D6) PB4 (D12)

PB1 (D9)

PB2 (D10)

PB3 (D11)

PB5 (D13)

Table 1: Pins on each chip that do or don’t go through resistors.

In order to facilitate production, the resistors added by the factory are size 0805 surface-

mount resistors of 33.2Ω value. There are also holes to allow tinkerers to add through-hole

components as desired. Tinkerers are encouraged to configure the resistors to facilitate

their application in any way that does not cause damage to the Displayboard. One good

modification is to simply replace the resistor with a short or jumper if no resistance to/from

the header pin is desired.

Due to limited space on the board, there are only two analog pins per chip exposed through

our headers. The analog pins on the chip are routed to the headers where the LED panel

has redundant pins. Since the LED panel has two places where one could provide it Row 4

[Red|Green] and Column 3 [Red|Green], analog inputs have been routed to the redundant

locations instead.

The SMD edition of the ATmega168 also features an extra analog input pin compared to the

DIP-socket version; this extra pin is used for the auto-addressing scheme, and the signal

passing through this pin on all chips is called RIN. The RIN line, which is read by the

 4

firmware to calculate the auto-addressing value, is supposed to be high (5V) on the left (or

top left) side of the marquee, and low (0V or GND) on the right (or bottom right) side of the

marquee. After passing through the right (red) chip, the RIN line goes through a 10 KΩ

resistor before going to the output pin. This effectuates an even voltage drop between all

boards in a BriteBlox marquee, and explains why the firmware (ideally) reads board

addresses in the following manner:

Table 2: Values calculated by auto-addressing for various short marquees.

Of course, electronics rarely work as the mathematics dictates. As such, it is often observed

that the board addresses will “sag” or “bulge” depending on how 5V and GND is wired

through the RIN line. An example of this is when board addresses read {0, 15, 31, 47}

rather than {0, 16, 32, 48}; in some cases, one color of one board might read lower than the

other color on the same board. The software is set to make corrections to boards that are ±1

away from their expected value shortly before the text or animation begins to display.

However, it is recommended to only use auto-addressing with a maximum of 12 boards in

order to avoid situations where boards diverge more than ±1 away from their expected

value.

Marquee Data Protocol
The proprietary BriteBlox protocol, utilizing the RS-232 serial protocol at TTL (5V/0V) logic

levels, is designed to take advantage of the physical characteristics of the LED panels. The

LED panels happen to have 7 rows and 5 columns. By propagating information about one

column at a time in a single byte, the use of bandwidth is maximized without needing to

split bytes into tinier pieces and possibly conjoin them using complex algorithms.

There are two types of bytes sent by the BriteBlox protocol: address bytes and data bytes.

Despite both containing 8 bits, they contain very different data:

Each chip expects to receive one address bit and then five data bits. If the address

propagated matches the chip’s programmed or discovered address, it sets the internal

variable activeProc to true. activeProc remains true until five more data bytes (the

data bytes) have been read. In the unlikely event that an address byte or command is

received before five data bytes are received, the board will process the address byte or

command and will reset activeProc to false.

Length Addresses

2 0, 32

3 0, 21, 42

4 0, 16, 32, 48

Etc.

 5

Bit Purpose

8 (MSB) 1 = Address, 0 = Data

7 Address: 1 = Green, 0 = Red
Data: Top (7th) row

6 Address: MSB address bit (+32)
Data: 6th row

5 Address: 5th address bit (+16)
Data: 5th row

4 Address: 4th address bit (+8)
Data: 4th row

3 Address: 3rd address bit (+4)
Data: 3rd row

2 Address: 2nd address bit (+2)
Data: 2nd row

1 (LSB) Address: LSB address bit (+1)
Data: 1st (bottom) row

Table 3: Encoding of the protocol.

Special Firmware Operations
Address bytes can also act like command bytes. The way to enter Command Mode is to

satisfy a finite-state machine due to ground noise sometimes making communications

unreliable, especially on long or multi-row marquees. Specifically, the finite-state machine

requires that the following bytes are received over serial input in order before switching to

Command Mode: {0xD0, 0xE1, 0xF3, 0xF3, 0xD7, 0xEF, 0xF2, 0xE4, 0xFF}. This sequence

is the ASCII code for “PassWord” + 0x80 on each character, followed by 0xFF in order to

maintain backward compatibility with firmware versions prior to 3.4. Once Command

Mode is entered, the next byte expected is a number expressing a particular command.

Control Codes

All numbers in hexadecimal:

Control
code ID

Argument(s) Description

80 [00-39] Display both red & green test patterns for given chip

80 [40-79] Display test pattern on all chips

80 [80-BF] Display only the prescribed red chip ID's test pattern

80 [C0-FF] Display only the prescribed green chip ID's test pattern

81 [any value] Reset chip ID for all chips on all boards

82 [80-FE] Increment chip ID for specified chip

83 [81-FF] Decrement chip ID for specified chip

 6

84 [80-FF] [80-
FF]

Set chip ID for <argument 1, old address> to <argument 2, new address>

85 [80-FF] Program internal EEPROM to contain the current Chip ID reading

86 [80-FF] Clear the current address (write 0's)

87-8E N/A reserved

8F [any value] Clear all EEPROM on all chips
 Cleared address
 Cleared baud rate

90 none Reset serial to 9600 baud

91 none Reset serial to 14400 baud

92 none Reset serial to 19200 baud

93 none Reset serial to 28800 baud

94 none Reset serial to 38400 baud

95 none Reset serial to 57600 baud

96 none Reset serial to 76800 baud

97 none Reset serial to 115200 baud

98 none Reset serial to 200k baud

99 none Reset serial to 250k baud

9A none Reset serial to 500k baud

9B none Reset serial to 1M baud

9C none Reset serial to 9600 baud

9D none Reset serial to 9600 baud

9E none Program internal EEPROM to contain the current baud rate

9F none Clear the current baud rate from the EEPROM (write 0's)

A0 [80-FF] Broadcast the firmware revision number from given chip; otherwise
temporarily disable serial

Additional Support
Questions? Comments? Email us at sales@ledgoes.com. Find us on Twitter at

@LEDgoes_display, or on Facebook at https://www.facebook.com/LEDgoes.display.

mailto:sales@ledgoes.com
https://www.facebook.com/LEDgoes.display

